Chemical Engineering Journal 147 (2009) 161-172

journal homepage: www.elsevier.com/locate/cej

Contents lists available at ScienceDirect

Chemical Engineering Journal

=

Prediction of cell voltage and current efficiency in a lab scale chlor-alkali
membrane cell based on support vector machines

N. Shojai Kaveh?, F. Mohammadi®*, S.N. Ashrafizadeh?

2 Research Lab for Advanced Separation Processes, Department of Chemical Engineering,
Iran University of Science and Technology, Narmak, Tehran 16846, Iran
b Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran

ARTICLE INFO ABSTRACT

Article history:

Received 14 November 2007
Received in revised form 25 June 2008
Accepted 27 June 2008

Keywords:

Chlor-alkali

Membrane cell

Brine

Electrolysis

Support vector machine

The main aim of this study is to investigate the impacts of operating parameters on the cell performance
and predicting the same by SVM technique. This paper though introduces support vector machines (SVMs),
a relatively new powerful machine learning method based on statistical learning theory (SLT), into cell
voltage and current efficiency forecasting. In order to validate the model predictions, the effects of various
operating parameters on the cell voltage and current efficiency of the membrane cell were experimentally
investigated. The membrane cell included a standard DSA/CI; electrode as the anode, a nickel electrode as
the cathode and a Flemion 892 polymer film as the membrane. Each of six process parameters counting
anolyte pH (2-5), operating temperature (25-90 °C), electrolyte velocity (2.2-5.9 cm/s), brine concentra-
tion (200-300 g/L), current density (1-4 kA/m?), and run time were thoroughly studied at four levels for
low caustic concentrations (5-22 g/L).

The developed SVM model is not only capable to predict the cell voltage and caustic current efficiency
(CCE) but also to reflect the impacts of process parameters on the same functions. The predicted cell
voltages and current efficiencies using SVM modelling were found to be very close to the measured

values, particularly at higher current densities.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Chlor-alkali (CA) production is the major industrial scale electro
synthesis; total annual capacity of about 55.6 million metric tons
of chlorine world-wide [1]. The production of chlorine and caus-
tic soda by electrolysis of aqueous solutions of sodium chloride
or brine is one of the most important electrochemical processes,
demanding high-energy consumption. The total energy require-
ment is for instance 2% in the USA and 1% in Japan of the gross
electric power generated to maintain this process by the chlor-
alkali industry [2,3]. Significant improvement of the electrolytic
process in this aspect (i.e., reduction in cell voltage) would be
beneficial, both economically and environmentally. Cell voltage
and current efficiency are the most important process parameters
proportional to the power consumption of a CA plant. Therefore,
process evaluation is important from industrial point of view in
order to quantify the impact of process variables on these two
parameters. At the same time, prediction of the cell voltage and
current efficiency can facilitate achieving the optimum conditions
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as well as reducing the intercalary costs of trial and error experi-
ments.

There are different ways to predict and quantify these parame-
ters such as statistical methods [4], analytical formulations [5] and
non-parameter regression methods like artificial neural networks
(ANNS) [26] and support vector machine (SVM). However, litera-
ture does not show any published work on the application of SVM
for such predictions in chlor-alkali industry, though the new SVM
methods have already been applied to other fields [6-8].

Statistical methods are used to analyze the results of the exper-
iments and models on response as well as to determine the
contribution of each influencing factor. However, the main con-
cern with statistical methods is the difficulties in fulfilling many
rigid assumptions that are essential for justifying their applications,
e.g. sample size, linearity, and continuity. One alternative approach
for system predicting is the technique of SVM based on the struc-
tural risk minimization (SRM) principle. Based on this principle,
SVM achieves an optimum network structure by striking a right
balance between the quality of the approximation of the given data
and the complexity of the approximating function. The SVM reveals
the underlying statistical relationships among variables corrupted
by random error. This SVM algorithm presented by Vapnik [9],
as other similar non-parametric statistical regression methods is
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Nomenclature

Chrine brine concentration (g/L)

E SVM regression error

F Faraday’s constant (96,458 C/mol); electrolyte
velocity (cm/s)

ip applied current density (KA/m?2)

1 current (kA)

K(-) kernel function

L Lagrangian function

m(t=0) mass of initial caustic soda,5¢g

m(t) mass of produced caustic at time ¢t (g)

Mwnaon  caustic molecular weight, 40 g/mol

N number of exchange mol electron

RBF redial basis function

t run time (s)

X, Xj,...,Xp independent or predictor variables

Y dependent or response variable

Greek letters

Yy parameter for RBF kernel

NNaoH  caustic current efficiency

v SVM parameter for performing the cross validation
grid search

D transformation for independent variable

intended to alleviate the main drawback of parametric regression,
i.e., the mismatch of assumed model structure and the actual data.
In nonparametric regression a priori knowledge of the functional
relationship between the dependent variable Y and independent
variables, X1, Xo,...,Xm, is not required. In fact, one of the main
results of non-parametric regression is determination of the actual
form of this relationship. The objective of this paper is to develop a
general model based on support vector machines to relate the cell
voltage and caustic current efficiency (CCE) to operation param-
eters and quantify the impact of process variables on these two
parameters.

SVM is a relatively novel powerful machine learning method
based on statistical learning theory (SLT), which is a small sam-
ple statistical theory introduced by Vapnik [9]. SVM is powerful for
the problems characterized by small samples, nonlinearity, high
dimension and local minima. Currently, SVM is an active field in
artificial intelligent technology, and has been applied to pattern
recognition and function estimation [10]. The empirical risk min-
imization (ERM) principle is generally employed in the classical
methods such as the least-square methods, the maximum likeli-
hood methods and traditional ANN. In SVM, the ERM is replaced
by the SRM principle, which seeks to minimize an upper bound
of the generalization error rather than minimize the training error
[9,11]. Based on this principle, SVM achieves an optimum network
structure by striking a right balance between the quality of the
approximation of the given data and the complexity of the approxi-
mating function. Therefore, the over-fitting phenomenon in general
ANN can be avoided and excellent generalization performance can
be obtained. Furthermore, in SVM, support vectors corresponding
to the hidden units of general ANN are automatically determined
after the SVM training. This implies that the difficult task of deter-
mining the network structure in general ANN can be prevented.
Compared with traditional neural networks, SVM possesses promi-
nent advantages: (1) strong theoretical background provides SVM
with high generalization capability and can avoid local minima. (2)
SVM always has a solution, which can be quickly obtained by a
standard algorithm (quadratic programming). (3) SVM need not

determine network topology in advance, which can be automat-
ically obtained when training process ends. (4) SVM builds a result
based on a sparse subset of training samples, which reduce the
workload.

On the other hand, the CA model achieved by SVM can be
employed to examine the effects of various operating parameters
as well as to compare the model predictions with the experimental
values. With the developed SVM model, one can further study the
variations of dependent parameters versus independent parame-
ters. SVM’s main difference from statistical methods is attributed to
itsrelinquishment in terms of strict conditions for data samples and
associated assumptions. This is applicable to the existing situation
of data availability for the cell voltage and CCE factors, which are
not good enough for either statistical or numerical modelling. At
the same time, analytical models are better than the SVM in terms
of their touching the detailed mechanisms of interactions among
various impact factors. Nevertheless, such methods’ limitations are
also from their attempts to specify the complicated processes by
detailed mathematical formulations, since many doubtful, inter-
active, and dynamic system components can barely be expressed
as precise analytical formulations. Under such conditions, SVM
becomes one of the usable means for analyzing the related effects
and interactions; it can be used without disturbing either a number
of prerequisites associated with statistical models or being forced
to assume unrealistic or over-simplified system conditions that are
needed for analytical simulation.

The effects of operating parameters (five factors) on the perfor-
mance of a CA membrane cell using Taguchi and ANOVA techniques
was recently studied by Jalali et al. [4]. However, the effect of elec-
trolysis time was neglected in that study. Besides, to our knowledge,
there has been no published literature on SVM modelling of a CA
membrane cell. Though, literature have already covered the appli-
cation of this technique to the modelling of other processes [6-8]
and also a previous work of the current authors has developed an
ANN model for the prediction of cell voltage and current efficiency
in a CA membrane cell [26].

The main aim of this study was thus to investigate the impacts of
operating parameters on the cell performance indicators including
cell voltage and current efficiency as well as predicting the same by
SVM technique. Process parameters that have been studied at four
levels include anolyte pH (2-5), cell temperature (25-90°C), elec-
trolyte velocity (2.2-5.9 cm/s), brine concentration (200-300 g/L),
current density (1-4 kA/m?2) and run time (up to 150 min).

2. Theoretical background
2.1. Support vector machines

The problem of empirical data modelling is germane to many
engineering applications. In empirical data modelling a process of
induction is used to build up a model of the system, from which
it is hoped to deduce responses of the system that have yet to be
observed. Ultimately the quantity and quality of the observations
govern the performance of this empirical model [12]. By its obser-
vational nature data obtained is finite and sampled; typically this
sampling is non-uniform and due to the high dimensional nature
of the problem the data will form only a sparse distribution in the
input space. Consequently the problem is nearly always ill posed
[13] in the sense of Hadamard [14]. Traditional neural network
approaches have suffered difficulties with generalization, produc-
ing models that can overfit the data. This is a consequence of the
optimization algorithms used for parameter selection and the sta-
tistical measures used to select the ‘best’ model. The foundations
of support vector machines have been developed by Vapnik [15]
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and are gaining popularity due to many attractive features, and
promising empirical performance [18]. The formulation embodies
the structural risk minimization principle, which has been shown
to be superior [16], to traditional empirical risk minimization prin-
ciple, employed by conventional neural networks. SRM minimizes
an upper bound on the expected risk, as opposed to ERM that min-
imizes the error on the training data. It is this difference which
equips SVM with a greater ability to generalize, which is the goal
in statistical learning. SVMs were developed to solve the classifica-
tion problem, but recently they have been extended to the domain
of regression problems [17].

2.2. Support vector machine regression

The basic concept of the SVM regression is to map the input data
into a feature space via a nonlinear map. In the feature space, a lin-
ear decision function is constructed. The SRM principle is employed
in constructing optimum decision function. Then SVM nonlinearly
maps the inner product of the feature space to the original space
via kernels. The SVM nonlinear regression algorithms are reviewed
in this section. Given a set of training data

(X1,¥1)s -, (3, 1) €R* xR

The nonlinear function ¢ is employed to map original input
space R" (x element of R") to higher dimensional feature space Rk
(p(x) element of R¥), where k (k>>n) represents the dimension of
feature space. However, this function is not explicitly constructed
[27]. Then an optimum decision function f(x;) = wTg(x;) + b is con-
structed in this higher dimensional feature space, where w' =
(wq, ..., wy)is a transpose of the vector of weights in this feature
space. Nonlinear function estimation in the original space becomes
linear function estimation in feature space. By the SRM principle,
we obtain the optimization problem:

.. 1
Minimize R = i||w\|2 + CRemp

where Remp = (1/I)Z:=1L(y,-,f(xi)) is the error term, i.e. empirical
risk in learning theory, ||w||? is the regularization term, i.e. confi-
dence interval, which controls the complexity of model [11], and ¢
is a regularization parameter. L(y;, f(x;)) is the loss function which
is the loss or discrepancy between the y to a given input x and goal
function f{x). In the SVM regression, L(y;, f(x;)) is the e-insensitive
loss function, which generally includes the linear e-insensitive loss
function, the quadratic e-insensitive loss function and the Huber
loss function [10]. Different SVM algorithms can be constructed by
selecting a different e-insensitive loss function [12].

2.3. Standard SVM regression algorithm

A linear ¢-insensitive loss function is selected in the standard
SVM regression. The optimization objective of the standard SVM
regression is formulated as

minjw, €)= Jw'w + ¢ (& + &) (1)

i=1
Subject to
yi—wlp(x)—-b<e—§,

To(x;)+b—yi <e+8&,
£.6>0 i=1,...,1

where §; and & are slack variables and ¢ is the accuracy demanded
for the approximation. The solution to this optimization problem

is given by the saddle point of the Lagrangian:

L(W,é‘-*,é,a,a*,c, ﬁ’ :8*) %WTWJ’_CZ(E_‘_%T)

I
—Zm((w&o(xi» —Yi+b+e—§)
fZa i~ (We(x)) —b+e+§)
—Z(ﬁsi - B&)
i=1
(2)
(Minimum with respect to elements w, b, §; and & and maximum
with respect to Lagrange multipliers a; >0, a; > 0, 8;>0,i=1,...1).
From the optimality conditions
oL oL aL oL
W_o, %_0, agi*_o, a—gi_o (3)
We have
Z(a’ - aptx). D (ai-ai)=0. 4)
c—a;— ﬂ,_O c—a - pf= i=1,...,1
Based on the Mercer’s condition [10], we define kernels
K(x;, %) = (@0(x;), 9(x;)) (5)

By (2), (4) and (5), the optimization problem can be rewritten as

!
1
maxW(a, q;) = EZ i —a;)(a; — aj )K(x,,x])
:1 | (6)
+Z( i — @)y — Z(ai —aj)e
i=1 i=1
Subject to
> (ai—a)=0
O<agi<c, i=1,..,1
Oga;.*gc, i=1,..,1
Finally, nonlinear function is obtained as
f() =" (@i = a)K(x;, x) +b. (7)

2.4. Kernels

Kernels K(x, x;) can be any symmetric function satisfying the
Mercer’s condition. Different kernels, K(x, x;), can be selected to
construct different types of SVM. Typical examples include [10,12]:

e Polynomial kernels:
That is a popular method for nonlinear modelling, K(x, x;)=[(x,
x) +1]%;
e Radial basis function (RBF) kernels:
RBFs have received significant attention, most commonly with
a Gaussian of the form, K(x, x;)=exp(—((||x — x;]|2)/202));
e Multilayer perceptron kernels:
The long established MLP, with a single hidden layer, also has a
valid kernel representation, K(x, x;) = S(v(x, x;) + ).

In this paper, the RBF function is used as the kernel function
of SVM because RBF kernels tend to give good performance under
general smoothness assumptions.
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3. Experimental
3.1. Materials

The electrolyte was prepared from analytical grade NaCl and
NaOH from Merck Inc. (Germany) using double distilled water. All
other chemicals used for analysis were also analytical grade.

3.2. Apparatus

The cell performance test was carried out in a CA set-up sim-
ilar to a scaled-down industrial brine electrolysis unit. Fig. 1
shows a simplified flow diagram of the set-up used in this
study.

The cell was a divided filter-press type (Electrocell AB, Sweden)
with Flemion® 892 as the separator, a standard DSA Cl, and a Ni
plate as the anode and the cathode, respectively (see Fig. 2). The
electrode membrane gap was 2 mm. The feed tanks were heated
by jacketed heaters and their temperature was monitored by dig-
ital thermometers. Galvanostatic operation was employed using
a DC power supply. Anolyte pH was measured by a pH-meter
inserted in the anolyte feed tank. The membrane was immersed
in NaOH solution for a day to reach equilibrium prior to each
experiment.

3.3. Experimental procedure

The anolyte and catholyte were circulated in separate hydraulic
circuits during the experiment by two magnetic pumps according
to Fig. 1. The overflows from the anolyte and catholye compart-
ments of the cell were fed to different separators. The bubble free
electrolytes were returned to the appropriate feed tanks for further
recirculation. During electrolysis, Cl, gas produced was absorbed
by 2M NaOH solution in D-03 and then D-04. Constant currents
were applied to the cell and the cell voltages were measured. After
each test, the set-up was washed thoroughly with distilled water,
drained and dried. The electrolysis run times were either of 30, 60,
90, 120 and 150 min.

3.4. Chemical analysis

In order to measure the caustic produced, catholyte samples
were collected from D-02 and titrated against 0.1N HCI. These data
were then used for calculation of the caustic current efficiency.

3.5. SVM modelling

As mentioned before, the SVM algorithm was applied to corre-
late the cell voltage and CCE to the independent variables of pH,
current density, temperature, flow rate, brine concentration and
run time.

Various SVM architectures were investigated to obtain desired
model for predicting cell performance as a function of selected
input variables. Different scenarios on the type of kernel (poly-
nomial, linear, radial basis function (RBF), or sigmoid), and kernel
parameters (degree, gamma, coefficient) were analyzed to obtain
the best fit to the given data. Therefore, the developed model using
the SVM algorithm was designed to reach the optimal regression
between input variables.

Usually, in the training phase, a larger part of data (75%) was
used to train the model. To validate the model, 25% data pairs were
used for the testing purpose.

The performances of the SVM models were compared using the
root mean square error (RMSE), correlation coefficient, RZ, and T

statistics Eq. (8). T value measures the scattering around the line
(1:1). Where Tis close to 1.0, a good fitting is prevailed.

Z?=1 (Xim - Xip )2

Xp)?, T=1- .

= e ®)
i=1 Zi:l Xim — X)
where n is the number of data points, X the average of X over the n
samples, and X;, and X;, are the measured and predicted values of
process and product parameters, respectively. The final model was
selected on the basis of the lowest error on train and test sets of
data. Meanwhile, the accuracy of the SVM models was evaluated
by calculating standard deviation (S.D.) and average deviation (AD)
for each of the outputs for testing. A lower S.D. and AD indicate a
better prediction. S.D. and AD were calculated as

S.D. = \/ZL[((IX“ — Xipl)/Xim) = 100J°

n-1

bl

n
1 1Xim — Xip|
— ——— x 100 9
n X,'m % ( )
i=1

AD

Different algorithms were made and the optimum values of ker-
nel parameters obtained by trial and error. Adjustment of SVM
parameters included the kernel type, SVM type, kernel parameters,
v, ¥ and number of support vectors. v and y are SVM parameter for
performing the cross validation grid search and parameter for RBF
kernel, respectively.

4. Results and discussions
4.1. Data collection

The important parameters affecting the CA cell performance
based on our experiences and previous works [4,19-24] along with
the levels of these parameters are as follows: (1) anolyte pH: 2,
3, 4 and 5, (2) cell temperature (°C): 25, 50, 70 and 90, (3) flow
velocity (cm/s): 1.3, 2.2, 3.7 and 5.9, (4) brine concentration (g/L):
200, 235, 270 and 300, (5) current density (kA/m2): 1, 2, 3 and 4
and (6) run time: from 30 to 150 min. The latter are summarized in
Table 1.

By conducting experiments under these conditions using the
previously mentioned procedure, cell voltage and CCE data were
obtained.

4.2. Calibration and developing cell voltage and CCE model

The cell voltage and CCE data were divided into two data sets,
consisting of training and validation test data. In the training phase,
a larger part of data (75%) was used to train the models and the
remaining data (25%) were used in the validation phase. The main
aim of this activity was to obtain an SVM model with a minimal
dimension and minimum errors in training and testing calculations.
Different scenarios on the type of kernel and kernel parameters
were analyzed to obtain the best fit to the given data. For this
structure, the best combination of the SVM and kernel parame-
ters that were used to predict the cell voltage and CCE is shown in
Table 2.

Scatter data of Figs. 3 and 4 (a and b) provide comparisons of the
measured cell voltage and CCE levels with those of SVM-derived test
and train calculations. Tables 3 and 4 also give the overall outputs
of experiments and the results obtained based on the SVM model
predictions for cell voltage and CCE. According to these results, both
data sets provide a low average deviation (AD) among experimental
data and SVM model predictions. However, the results of developed
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Fig. 1. Process flow diagram of the chlor-alkali set-up utilized: (1) Membrane flow cell (M.E. cell). (2) Electrolyte tank (D-01, D-02). (3) Magnetic pumps (p-01, P-02). (4) Gas
separator (S-01, S-02). (5) Rotameter (RM-01, RM-02). (6) DC power supply. (7) Two feed tank consist of NaOH for neutralization produced chlorine (D-03, D-04).

Table 1

Levels of process parameters

pH Cell temperature (°C) Flow velocity (cm/s) Brine concentration (g/L) Current density (kA/m?) Run time (min)
Level 1 2 25 1.3 200 1 30
Level 2 3 50 2.2 235 2 60
Level 3 4 70 3.7 270 3 120
Level 4 5 90 5.9 300 4 150

Fig. 2. Side view of the membrane cell used in this study. (1) Cell body (Teflon). (2) EPDM gasket. (3) Standard DSA/Cl, anode. (4) Flemion 892 membrane. (5) Nickel cathode.
(6) Flow frame (Teflon). (7) Electrolyte inlet. (8) Electrolyte outlet, respectively.
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Table 2
The structure and performance of the final selected SVM model with optimum values
of model parameters used to predict (a) cell voltage and (b) CCE

Optimum Mean value
Kernel v Y Number of Training Testing T
type support

vectors RMSE R? RMSE R?
(aQ)RBF 054 046 38 0118 0995 0.161 0988 0.992
(b)RBF 0.5 0.58 48 0.009 0.966 0.016 0873 0.939

SVM model for cell voltage have a lower dispersion compared with
that of CCE which is likely to be due to the titration errors. This
implies that the developed SVM model in this study can accurately
forecast the cell voltage and CCE values.
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Fig. 3. The measured versus SVM-simulated for cell voltage. (a) Train and (b) test
values within 95% accuracy.
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Fig. 4. The measured versus SVM-simulated for CCE. (a) Train and (b) test values
within 95% accuracy.

4.3. Sensitivity analysis

Model sensitivity to each of the inputs is given by:

% change in output 8

% change in input 100 (10)

Sensitivity =

This relates the change in output for a change of a given input.
Eq. (10) shows the relative importance of an individual param-
eter for a given input set. A variable having a high sensitivity
is most likely important to the modeled process. The sensitiv-
ity was calculated for each of the input parameters. A graphical
and quantitative presentation of the impacts of the operating
parameters with contribution of each factor on mean response
for experimental and SVM-simulated cell voltage and current effi-
ciency are compared in Figs. 5 and 6. First of all, it is obvious
that the SVM model predictions are very close to the experimental
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Table 3
Experimental and SVM-simulated cell voltage values
Time (min) pH  Temperature (°C)  Flow (cm/s)  Brine concentration (g/L)  Current density (kA/m?)  Exp. cell voltage (V)  SVM-Pred. Voltage (V)  Error (%)
30 4 50 5.9 270 1 3.6 3.76 4.55
30 5 70 2.2 300 1 3.7 3.54 4.34
30 3 90 3.7 235 1 3.8 3.80 0.13
30 2 50 2.2 235 2 4.7 5.03 7.00
30 3 70 5.9 200 2 48 4381 0.27
30 5 90 13 270 2 48 4.83 0.62
30 2 25 3 200 1 52 5.20 0.04
30 4 25 3.7 300 2 5.6 5.62 0.40
30 2 70 3.7 270 3 5.9 6.01 1.91
30 4 90 2.2 200 3 6.0 6.00 0.05
30 3 50 13 300 3 6.8 6.80 0.05
30 2 90 5.9 300 4 7.5 7.18 433
30 4 70 13 235 4 7.8 7.79 0.07
30 5 25 58 235 3 78 7.58 4.02
30 5 50 3.7 200 4 8.4 8.35 0.54
30 3 25 A7 270 4 10.0 9.50 5.00
60 4 50 58 270 1 35 3.51 0.23
60 5 70 2.2 300 1 3.5 3.50 0.10
60 3 90 3.7 235 1 3.6 3.61 0.21
60 3 70 5 200 2 4.4 435 1.12
60 2 50 2.2 235 2 4.6 4.57 0.68
60 5 90 13 270 2 4.7 4.66 0.80
60 2 25 13 200 1 5.1 4.94 3.16
60 2 70 3.7 270 3 53 5.34 0.71
60 4 25 3.7 300 2 5.4 5.30 1.82
60 4 90 2.2 200 3 5.4 5.42 0.43
60 2 90 58 300 4 6.2 6.23 0.41
60 3 50 13 300 3 6.2 6.27 1.16
60 4 70 13 235 4 6.9 6.94 0.56
60 5 25 5 235 3 6.9 6.85 0.68
60 5 50 3.7 200 4 7.5 7.53 0.35
60 3 25 2.2 270 4 8.7 8.74 043
120 3 90 3.7 235 1 33 3.39 2.82
120 4 50 58 270 1 33 3.29 0.45
120 5 70 2.2 300 1 34 3.45 1.50
120 3 70 5.9 200 2 4.0 3.76 5.90
120 2 50 A2 235 2 4.1 4.08 0.50
120 5 90 13 270 2 43 4.46 3.79
120 2 25 13 200 1 4.6 4.57 0.70
120 2 70 3.7 270 3 4.7 4.67 0.59
120 4 90 2.2 200 3 4.8 4.69 2.19
120 4 25 3.7 300 2 49 4.85 0.93
120 2 90 5.9 300 4 5.0 5.08 1.58
120 3 50 13 300 3 5.6 5.63 0.51
120 4 70 13 235 4 6.0 5.85 255
120 5 25 5.9 235 3 5.9 5.91 0.22
120 5 50 3.7 200 4 6.5 6.46 0.59
120 3 25 2?2 270 4 73 7.70 545
150 3 90 3.7 235 1 3.2 3.32 3.75
150 4 50 5 270 1 33 3.27 0.99
150 5 70 2.2 300 1 34 3.40 0.14
150 3 70 5.9 200 2 3.6 3.62 0.62
150 2 50 2.2 235 2 4.0 4.02 0.48
150 5 90 13 270 2 4.2 4.40 4.82
150 2 70 3.7 270 3 4.5 4.66 3.51
150 2 25 13 200 1 45 4.45 1.12
150 4 25 3.7 300 2 4.7 4.71 0.28
150 4 90 22 200 3 48 4.57 4.87
150 2 90 5.9 300 4 49 4.95 1.08
150 3 50 13 300 3 55 5.51 0.23
150 4 70 13 235 4 5.8 5.68 2.10
150 5 25 59 235 3 5.8 575 0.79
150 5 50 3.7 200 4 6.3 6.29 0.11
150 3 25 22 270 4 7.5 7.47 035

AD=1.59%

data. Current density has the most prominent effect on the cell
voltage as seen in Fig. 5 with a effect value of 55.4% while the
temperature and run time are the second and third influencing
parameters with a effect value of about 21.7 and 17.8%, respec-
tively. Brine concentration has the lowest effect with impact values
of less than 1%. The impacts of pH and flow rate on the cell volt-

age are comparable and quite low within the experimental range
studied.

Brine concentration and temperature are important parameters
for control of CCE according to Fig. 6. However, in respect to CCE,
the effects of operating parameters, more or less, are of the same
order. Here, brine concentration has the highest impact with effect
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Table 4
Experimental and SVM-simulated CCE values
Time (min) pH Temperature (°C) Flow (cm/s) Brine concentration (g/L) Current density (kA/m?) Exp. CCE SVM-Pred. CCE Error (%)
29 4 25 3.7 300 2 0.861 0.863 0.23
30 5 70 2.2 300 1 0.865 0.837 3.24
30 5 50 3.7 200 4 0.894 0.890 0.44
30 2 25 13 200 1 0.904 0.899 0.53
30 3 70 5.9 200 2 0.912 0.911 0.15
30 2 90 5.9 300 4 0.897 0.899 0.21
30 3 25 22 270 4 0.843 0.844 0.07
31 4 90 2.2 200 3 0.862 0.844 2.05
31 2 70 3.7 270 3 0.823 0.824 0.12
31 3 90 3.7 235 1 0.963 0.945 1.92
31 4 70 13 235 4 0.755 0.760 0.65
31 4 50 5.9 270 1 0.921 0.916 0.49
50 3 50 13 300 3 0.803 0.802 0.11
60 3 25 22 270 4 0.822 0.842 2.38
60 3 90 3.7 235 1 0.930 0.927 0.36
60 4 90 22 200 3 0.821 0.826 0.66
60 4 25 3.7 300 2 0.857 0.852 0.56
60 2 90 5.9 300 4 0.946 0.925 2.25
60 3 70 5.9 200 2 0.892 0.892 0.03
61 5 90 13 270 2 0.808 0.807 0.07
61 5 70 2.2 300 1 0.830 0.834 0.46
61 4 50 5.9 270 1 0.893 0.900 0.76
61 2 70 3.7 270 3 0.836 0.830 0.66
61 5 25 5.9 235 3 0.786 0.791 0.59
61 2 25 13 200 1 0.848 0.868 241
61 4 70 13 235 4 0.757 0.762 0.73
90 5 25 5.9 235 3 0.775 0.779 0.47
90 3 90 3.7 235 1 0.923 0.904 2.01
90 4 25 3.7 300 2 0.848 0.845 0.29
90 3 70 5.9 200 2 0.871 0.875 0.48
90 2 25 13 200 1 0.821 0.845 2.95
90 4 50 5.9 270 1 0.894 0.884 1.10
90 2 90 5.9 300 4 0.955 0.938 1.77
91 5 70 2.2 300 1 0.841 0.834 0.80
91 3 25 2.2 270 4 0.846 0.843 0.40
91 5 90 13 270 2 0.826 0.811 1.77
91 4 90 22 200 3 0.817 0.815 0.27
91 2 70 3.7 270 3 0.855 0.837 2.08
91 5 50 3.7 200 4 0.855 0.862 0.80
92 4 70 13 235 4 0.790 0.775 1.87
100 3 50 13 300 3 0.813 0.811 0.20
120 2 70 3.7 270 3 0.833 0.842 1.12
120 2 90 5.9 300 4 0.922 0.937 1.60
120 3 70 5.9 200 2 0.871 0.864 0.80
120 5 25 5.9 235 3 0.784 0.780 0.50
120 4 25 3.7 300 2 0.875 0.843 3.68
120 3 25 22 270 4 0.870 0.845 291
120 4 50 5.9 270 1 0.865 0.871 0.68
121 5 90 13 270 2 0.825 0.818 0.85
121 4 70 13 235 4 0.804 0.792 1.47
121 3 90 3.7 235 1 0.879 0.882 0.29
121 5 70 2.2 300 1 0.826 0.837 1.31
121 4 90 22 200 3 0.808 0.812 0.47
122 2 25 13 200 1 0.848 0.830 2115
150 3 25 2.2 270 4 0.839 0.846 0.89
150 4 70 13 235 4 0.805 0.810 0.58
150 4 90 22 200 3 0.821 0.815 0.69
150 5 25 5.9 235 3 0.790 0.793 0.41
150 5 50 3.7 200 4 0.868 0.866 0.21
150 3 70 5.9 200 2 0.880 0.859 2.36
150 5 90 13 270 2 0.821 0.825 0.45
150 2 50 2.2 235 2 0.793 0.810 2.20
150 2 70 3.7 270 3 0.851 0.846 0.59
150 5 70 2.2 300 1 0.839 0.840 0.10
150 4 25 3.7 300 2 0.846 0.843 0.33
150 3 50 13 300 3 0.816 0.821 0.56
150 4 50 5.9 270 1 0.865 0.862 0.34
150 2 90 5.9 300 4 0.927 0.924 0.37
150 2 25 13 200 1 0.821 0.825 0.54

AD=0.98%
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Fig. 5. Sensitivity analysis results based on this work, Jalali’s experimental [4] and
SVM-simulated cell voltage results.

value of 20.36% while the lowest impact corresponds to flow with
effect value of 10.6%.

Also for comparison purposes, the experimental and SVM results
from this study were compared with those obtained by Jalali et
al. [4] in these figures. These graphs compare sensitivity analy-
sis for five parameters without run time input from Jalali’s data.
Although they neglected the influence of run time, but their results
are in good agreement with our experimental and thus SVM model
outputs. Finally it can be realized that current density and brine
concentration variables have the highest impacts on the CA cell
voltage and CCE, respectively.

4.4. Effect of operating parameters on the cell performance
indicators

Based on SVM outputs, the effect of controllable operating
parameters on the mean response for the CA cell voltage and CCE
are displayed in Figs. 7-12. According to these results, cell voltage
is enhanced dramatically with current density while it is altered
slightly with the anolyte pH. On the other hand, the cell voltage
significantly decreases with increasing the cell temperature while
slightly with those of flow rate and brine concentration. The cell
voltage also decreases with run time.

The conditions to obtain a minimum value for cell voltage simu-
lated by SVM model are as follows: pH (2), T(90°C), flow (5.9 cm/s),
Corine (300g/L), ip (1 kA/m?) and the run time (150 min).

Another valuable response which is directly proportional to the
total energy consumed by an electrolysis cell is the current effi-
ciency. The caustic current efficiency was thus measured according
to the procedure described in Section 3 and calculated based on the

Relative Variable Impacts
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Fig. 6. Sensitivity analysis results based on this work, Jalali’s experimental [4] and
SVM-simulated CCE results.
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Fig. 7. Cell voltage and current efficiency at different levels of pH resulted from the
new SVM based model.
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Fig. 8. Cell voltage and current efficiency at different levels of temperature by the
new SVM based model.
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Fig. 10. Cell voltage and current efficiency at different levels of brine concentration
by the new SVM based model.
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Fig. 11. Cell voltage and current efficiency at different levels of current density by
the new SVM based model.
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Fig. 12. Cell voltage and current efficiency at different levels of run time by the new
SVM based model.

following equation [25]:

m(t)-m(t=0) m(t)—m(t=0)
(It/nF) X MWNaOH B (It/nF) x 40

1NaOH = (11)

The impacts of various operating parameters on the CCE, based
on SVM results, are shown in Figs. 7-12.

According to Fig. 7, the current efficiency decreases with pH due
to the production of by products such as hypochlorite and chlorate
in anolyte at higher pH’s while pH does not have a sensible impact
on the CA cell voltage.

Fig. 8 shows variation of the caustic current efficiency and cell
voltage with the cell temperature. As it is seen, CCE improves with
cell temperature due to depressing of the side reactions while
the overall cell voltage decreases with temperature because of a
decrease in the voltage components of the cell such as decomposi-
tion potential, IR drops and the overpotentials.

By increasing electrolyte velocity, a slight decrease in the cell
voltage can be observed as shown in Fig. 9. This may be caused
by a reduction in the amount of attached H, and Cl, bubbles on
both sides of the membrane and the bubbles remained within
the catholyte and anolyte [21,24]. The presence of the bubbles
decreases the actual conductivity of the electrolyte and thus it
increases cell voltage.

The cell voltage is also decreases slightly with brine concentra-
tion within the brine concentration range studied, but the effect of
brine concentration on current efficiency is pronounced, as seen in
Fig. 10. This is likely to be due to suppressing of the oxygen evolution
as a major side reaction at low brine concentration.

According to Fig. 11 the current density was discovered to be
the most remarkable parameter influencing the cell voltage and
current efficiency. These facts were expected considering the ohms
law for the cell voltage (AVce =1 x Rcey); and Eq. (11) describing
the inverse relationship between current density and CCE.

Both functions have a downtrend with increasing run time
according to Fig. 12. The lower CCE achieved at higher run times.
In other words, the higher caustic concentration may be due to
the OH~ back migration toward anolyte at higher runtimes. The
catholyte conductivity enhances with NaOH concentration within
the caustic concentration range studied resulting in a decrease in
the cell voltage.

For comparison purposes, the results from Jalali et al. [4] for an
experimental system similar to the one used in this study but at
different conditions, are also represented in Fig. 13. As it is obvious,
the general prediction trends developed in this study by the SVM
model are quite consistent with the experimental results and trends
obtained by Taguchi and ANOVA techniques used [4]. Nevertheless,
a slight difference in values is observable due to the differences
in the set-up conditions as well as neglecting the run time as a
parameter in that study.

On the other hand for comparison between two different non-
parameter regression methods, the ANN modelling results from
Shojai Kaveh et al. [26] for this experimental system, along with
the results of SVM model are shown in Table 5. According to this
table, ANN model for cell voltage has better consistency with exper-

Table 5
Comparison between the predictions of ANN & SVM models for the same experi-
mental data

Cell voltage CCE

AD%  R?(train)  R%(test) AD%  R2(train)  R? (test)
SVM model 1.59 0.995 0.966 0.98 0.988 0.873
(this work)
ANN model 1.27 0.997 0.989 3.14 0.903 0.802
[26]
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Fig. 13. Cell voltage and current efficiency at different levels of operating parameters, (A) pH, (B) temperature, (C) electrolyte velocity, (D) Brine concentration, and (E) current

density [4].

imental data and also the results of SVM model has a lower average
error for predicting CCE.

5. Conclusions

Cell voltage and caustic current efficiency are widely employed
to improve or enhance the performance of chlor-alkali membrane
cells. Therefore, accurate prediction of CCE and cell voltage is of
utmost importance. In this study a new SVM model for the pre-
diction of cell voltage and CCE was developed. The effectiveness of
the developed SVM model was also validated by comparing the pre-
dicted results with the measured cell voltage and CCE values. Based
on the results obtained in this study, the following conclusions are
drawn:

1. SVM model can be used to predict the impacts of operating
parameters including pH, temperature, flow rate, brine concen-
tration, current density and run time on the cell voltage and
current efficiency of a chlor-alkali cell.

2. The SVM technology has been shown to be a useful tool not only
to approximate but also to predict cell voltage and CCE versus
process parameters in membrane chlor-alkali cell.

. The final selected SVM models were able to predict the cell volt-

age and CCE values with RMSE of 0.161 and 0.016, R? of 0.998
and 0.873, and T values of 0.992 and 0.939, respectively.

. The current density and cell temperature have the highest effect

values on the cell voltage, i.e. 55.4 and 21.7%, respectively.

. Based on SVM-simulated outputs, the following operating con-

ditions are proposed to maximize the current efficiency and
minimize the cell voltage: pH=2; temperature=90°C; flow
rate=5.9 cm/s; brine concentration=300g/L; and current den-
sity=1KkA/m?2.

. Evaluation of the relative effectiveness of operating parame-

ters by the SVM model revealed that while current density
and temperature have the largest contribution to the cell volt-
age, brine concentration have the largest impact on the current
efficiency. Other factors have almost similar effects on the
response.

. The values of predicted cell voltages and CCE were quite compa-

rable with those of measured values with an average deviation
of only 1.59 and 0.98%, respectively.

. A comparison between SVM model of this work and ANN model

from a previous work [26] shows that the developed ANN model
predicts the cell voltage, and the developed SVM model predicts
current efficiency, more accurately.
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