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a b s t r a c t

The main aim of this study is to investigate the impacts of operating parameters on the cell performance
and predicting the same by SVM technique. This paper though introduces support vector machines (SVMs),
a relatively new powerful machine learning method based on statistical learning theory (SLT), into cell
voltage and current efficiency forecasting. In order to validate the model predictions, the effects of various
operating parameters on the cell voltage and current efficiency of the membrane cell were experimentally
investigated. The membrane cell included a standard DSA/Cl2 electrode as the anode, a nickel electrode as
the cathode and a Flemion 892 polymer film as the membrane. Each of six process parameters counting

◦

rine
lectrolysis
upport vector machine

anolyte pH (2–5), operating temperature (25–90 C), electrolyte velocity (2.2–5.9 cm/s), brine concentra-
tion (200–300 g/L), current density (1–4 kA/m2), and run time were thoroughly studied at four levels for
low caustic concentrations (5–22 g/L).

The developed SVM model is not only capable to predict the cell voltage and caustic current efficiency
(CCE) but also to reflect the impacts of process parameters on the same functions. The predicted cell
voltages and current efficiencies using SVM modelling were found to be very close to the measured
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. Introduction

Chlor-alkali (CA) production is the major industrial scale electro
ynthesis; total annual capacity of about 55.6 million metric tons
f chlorine world-wide [1]. The production of chlorine and caus-
ic soda by electrolysis of aqueous solutions of sodium chloride
r brine is one of the most important electrochemical processes,
emanding high-energy consumption. The total energy require-
ent is for instance 2% in the USA and 1% in Japan of the gross

lectric power generated to maintain this process by the chlor-
lkali industry [2,3]. Significant improvement of the electrolytic
rocess in this aspect (i.e., reduction in cell voltage) would be
eneficial, both economically and environmentally. Cell voltage
nd current efficiency are the most important process parameters
roportional to the power consumption of a CA plant. Therefore,

rocess evaluation is important from industrial point of view in
rder to quantify the impact of process variables on these two
arameters. At the same time, prediction of the cell voltage and
urrent efficiency can facilitate achieving the optimum conditions
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s well as reducing the intercalary costs of trial and error experi-
ents.
There are different ways to predict and quantify these parame-

ers such as statistical methods [4], analytical formulations [5] and
on-parameter regression methods like artificial neural networks
ANNs) [26] and support vector machine (SVM). However, litera-
ure does not show any published work on the application of SVM
or such predictions in chlor-alkali industry, though the new SVM

ethods have already been applied to other fields [6–8].
Statistical methods are used to analyze the results of the exper-

ments and models on response as well as to determine the
ontribution of each influencing factor. However, the main con-
ern with statistical methods is the difficulties in fulfilling many
igid assumptions that are essential for justifying their applications,
.g. sample size, linearity, and continuity. One alternative approach
or system predicting is the technique of SVM based on the struc-
ural risk minimization (SRM) principle. Based on this principle,
VM achieves an optimum network structure by striking a right

alance between the quality of the approximation of the given data
nd the complexity of the approximating function. The SVM reveals
he underlying statistical relationships among variables corrupted
y random error. This SVM algorithm presented by Vapnik [9],
s other similar non-parametric statistical regression methods is

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:f.mohammadi@ippi.ac.ir
dx.doi.org/10.1016/j.cej.2008.06.030
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Nomenclature

Cbrine brine concentration (g/L)
E SVM regression error
F Faraday’s constant (96,458 C/mol); electrolyte

velocity (cm/s)
ip applied current density (kA/m2)
I current (kA)
K (·,·) kernel function
L Lagrangian function
m(t = 0) mass of initial caustic soda, 5 g
m(t) mass of produced caustic at time t (g)
MwNaOH caustic molecular weight, 40 g/mol
N number of exchange mol electron
RBF redial basis function
t run time (s)
X, X1, . . ., Xp independent or predictor variables
Y dependent or response variable

Greek letters
� parameter for RBF kernel
�NaOH caustic current efficiency
� SVM parameter for performing the cross validation
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grid search
˚ transformation for independent variable

ntended to alleviate the main drawback of parametric regression,
.e., the mismatch of assumed model structure and the actual data.
n nonparametric regression a priori knowledge of the functional
elationship between the dependent variable Y and independent
ariables, X1, X2, . . ., Xm, is not required. In fact, one of the main
esults of non-parametric regression is determination of the actual
orm of this relationship. The objective of this paper is to develop a
eneral model based on support vector machines to relate the cell
oltage and caustic current efficiency (CCE) to operation param-
ters and quantify the impact of process variables on these two
arameters.

SVM is a relatively novel powerful machine learning method
ased on statistical learning theory (SLT), which is a small sam-
le statistical theory introduced by Vapnik [9]. SVM is powerful for
he problems characterized by small samples, nonlinearity, high
imension and local minima. Currently, SVM is an active field in
rtificial intelligent technology, and has been applied to pattern
ecognition and function estimation [10]. The empirical risk min-
mization (ERM) principle is generally employed in the classical

ethods such as the least-square methods, the maximum likeli-
ood methods and traditional ANN. In SVM, the ERM is replaced
y the SRM principle, which seeks to minimize an upper bound
f the generalization error rather than minimize the training error
9,11]. Based on this principle, SVM achieves an optimum network
tructure by striking a right balance between the quality of the
pproximation of the given data and the complexity of the approxi-
ating function. Therefore, the over-fitting phenomenon in general
NN can be avoided and excellent generalization performance can
e obtained. Furthermore, in SVM, support vectors corresponding
o the hidden units of general ANN are automatically determined
fter the SVM training. This implies that the difficult task of deter-
ining the network structure in general ANN can be prevented.
ompared with traditional neural networks, SVM possesses promi-
ent advantages: (1) strong theoretical background provides SVM
ith high generalization capability and can avoid local minima. (2)

VM always has a solution, which can be quickly obtained by a
tandard algorithm (quadratic programming). (3) SVM need not

a
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o
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etermine network topology in advance, which can be automat-
cally obtained when training process ends. (4) SVM builds a result
ased on a sparse subset of training samples, which reduce the
orkload.

On the other hand, the CA model achieved by SVM can be
mployed to examine the effects of various operating parameters
s well as to compare the model predictions with the experimental
alues. With the developed SVM model, one can further study the
ariations of dependent parameters versus independent parame-
ers. SVM’s main difference from statistical methods is attributed to
ts relinquishment in terms of strict conditions for data samples and
ssociated assumptions. This is applicable to the existing situation
f data availability for the cell voltage and CCE factors, which are
ot good enough for either statistical or numerical modelling. At
he same time, analytical models are better than the SVM in terms
f their touching the detailed mechanisms of interactions among
arious impact factors. Nevertheless, such methods’ limitations are
lso from their attempts to specify the complicated processes by
etailed mathematical formulations, since many doubtful, inter-
ctive, and dynamic system components can barely be expressed
s precise analytical formulations. Under such conditions, SVM
ecomes one of the usable means for analyzing the related effects
nd interactions; it can be used without disturbing either a number
f prerequisites associated with statistical models or being forced
o assume unrealistic or over-simplified system conditions that are
eeded for analytical simulation.

The effects of operating parameters (five factors) on the perfor-
ance of a CA membrane cell using Taguchi and ANOVA techniques
as recently studied by Jalali et al. [4]. However, the effect of elec-

rolysis time was neglected in that study. Besides, to our knowledge,
here has been no published literature on SVM modelling of a CA

embrane cell. Though, literature have already covered the appli-
ation of this technique to the modelling of other processes [6–8]
nd also a previous work of the current authors has developed an
NN model for the prediction of cell voltage and current efficiency

n a CA membrane cell [26].
The main aim of this study was thus to investigate the impacts of

perating parameters on the cell performance indicators including
ell voltage and current efficiency as well as predicting the same by
VM technique. Process parameters that have been studied at four
evels include anolyte pH (2–5), cell temperature (25–90 ◦C), elec-
rolyte velocity (2.2–5.9 cm/s), brine concentration (200–300 g/L),
urrent density (1–4 kA/m2) and run time (up to 150 min).

. Theoretical background

.1. Support vector machines

The problem of empirical data modelling is germane to many
ngineering applications. In empirical data modelling a process of
nduction is used to build up a model of the system, from which
t is hoped to deduce responses of the system that have yet to be
bserved. Ultimately the quantity and quality of the observations
overn the performance of this empirical model [12]. By its obser-
ational nature data obtained is finite and sampled; typically this
ampling is non-uniform and due to the high dimensional nature
f the problem the data will form only a sparse distribution in the
nput space. Consequently the problem is nearly always ill posed
13] in the sense of Hadamard [14]. Traditional neural network

pproaches have suffered difficulties with generalization, produc-
ng models that can overfit the data. This is a consequence of the
ptimization algorithms used for parameter selection and the sta-
istical measures used to select the ‘best’ model. The foundations
f support vector machines have been developed by Vapnik [15]
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nd are gaining popularity due to many attractive features, and
romising empirical performance [18]. The formulation embodies
he structural risk minimization principle, which has been shown
o be superior [16], to traditional empirical risk minimization prin-
iple, employed by conventional neural networks. SRM minimizes
n upper bound on the expected risk, as opposed to ERM that min-
mizes the error on the training data. It is this difference which
quips SVM with a greater ability to generalize, which is the goal
n statistical learning. SVMs were developed to solve the classifica-
ion problem, but recently they have been extended to the domain
f regression problems [17].

.2. Support vector machine regression

The basic concept of the SVM regression is to map the input data
nto a feature space via a nonlinear map. In the feature space, a lin-
ar decision function is constructed. The SRM principle is employed
n constructing optimum decision function. Then SVM nonlinearly

aps the inner product of the feature space to the original space
ia kernels. The SVM nonlinear regression algorithms are reviewed
n this section. Given a set of training data

x1, y1), . . . , (xl, yl) ∈ Rn × R

The nonlinear function ϕ is employed to map original input
pace Rn (x element of Rn) to higher dimensional feature space Rk

ϕ(x) element of Rk), where k (k � n) represents the dimension of
eature space. However, this function is not explicitly constructed
27]. Then an optimum decision function f (xi) = wTϕ(xi) + b is con-
tructed in this higher dimensional feature space, where wT =
w1, . . . , wk) is a transpose of the vector of weights in this feature
pace. Nonlinear function estimation in the original space becomes
inear function estimation in feature space. By the SRM principle,

e obtain the optimization problem:

inimize R = 1
2

||w||2 + cRemp

here Remp = (1/l)
∑l

i=1L(yi, f (xi)) is the error term, i.e. empirical
isk in learning theory, ||w||2 is the regularization term, i.e. confi-
ence interval, which controls the complexity of model [11], and c

s a regularization parameter. L(yi, f(xi)) is the loss function which
s the loss or discrepancy between the y to a given input x and goal
unction f(x). In the SVM regression, L(yi, f(xi)) is the ε-insensitive
oss function, which generally includes the linear ε-insensitive loss
unction, the quadratic ε-insensitive loss function and the Huber
oss function [10]. Different SVM algorithms can be constructed by
electing a different ε-insensitive loss function [12].

.3. Standard SVM regression algorithm

A linear ε-insensitive loss function is selected in the standard
VM regression. The optimization objective of the standard SVM
egression is formulated as

in J(w, �) = 1
2

wTw + c
∑
i=1

(�i + �∗
i ) (1)

ubject to

yi − wTϕ(xi) − b ≤ ε − �i,

wTϕ(xi) + b − yi ≤ ε + �∗

i
,

�∗
i
, �i ≥ 0, i = 1, . . . , l

here �i and �∗
i

are slack variables and ε is the accuracy demanded
or the approximation. The solution to this optimization problem

o
g

ring Journal 147 (2009) 161–172 163

s given by the saddle point of the Lagrangian:

L(w, �∗, �, a, a∗, c, ˇ, ˇ∗) = 1
2

wTw + c
∑

(�i + �∗
i )

−
l∑

i=1

ai((w
Tϕ(xi)) − yi + b + ε − �i)

−
l∑

i=1

a∗
i (yi − (wTϕ(xi)) − b + ε + �∗

i )

−
l∑

i=1

(ˇ�i − ˇ∗
i �∗

i )

(2)

Minimum with respect to elements w, b, �i and �∗
i

and maximum
ith respect to Lagrange multipliers ai ≥ 0, a∗

i
≥ 0, ˇi ≥ 0, i = 1, . . . l).

rom the optimality conditions

∂L

∂w
= 0,

∂L

∂b
= 0,

∂L

∂�∗
i

= 0,
∂L

∂�i
= 0 (3)

e have

wT =
l∑

i=1

(ai − a∗
i )ϕ(xi),

∑
(ai − a∗

i ) = 0,

c − ai − ˇi = 0, c − a∗
i

− ˇ∗
i

= 0, i = 1, . . . , l

(4)

Based on the Mercer’s condition [10], we define kernels

(xi, xj) = 〈ϕ(xi), ϕ(xj)〉 (5)

By (2), (4) and (5), the optimization problem can be rewritten as

max W(a, ai) = −1
2

l∑
i=1

(ai − a∗
i )(aj − a∗

j )K(xi, xj)

+
l∑

i=1

(ai − a∗
i )yi −

l∑
i=1

(ai − a∗
i )ε

(6)

ubject to∑
(ai − a∗

i
) = 0

0 ≤ ai ≤ c, i = 1, ..., l
0 ≤ a∗

i
≤ c, i = 1, ..., l

Finally, nonlinear function is obtained as

(x) =
∑

(ai − a∗
i )K(xi, x) + b. (7)

.4. Kernels

Kernels K(x, xi) can be any symmetric function satisfying the
ercer’s condition. Different kernels, K(x, xi), can be selected to

onstruct different types of SVM. Typical examples include [10,12]:

Polynomial kernels:
That is a popular method for nonlinear modelling, K(x, xi)=[〈x,

xi〉 + 1]d;
Radial basis function (RBF) kernels:

RBFs have received significant attention, most commonly with
a Gaussian of the form, K(x, xi) = exp(−((||x − xi||2)/2	2));
Multilayer perceptron kernels:

The long established MLP, with a single hidden layer, also has a

valid kernel representation, K(x, xi) = S(�(x, xi) + c).

In this paper, the RBF function is used as the kernel function
f SVM because RBF kernels tend to give good performance under
eneral smoothness assumptions.
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. Experimental

.1. Materials

The electrolyte was prepared from analytical grade NaCl and
aOH from Merck Inc. (Germany) using double distilled water. All
ther chemicals used for analysis were also analytical grade.

.2. Apparatus

The cell performance test was carried out in a CA set-up sim-
lar to a scaled-down industrial brine electrolysis unit. Fig. 1
hows a simplified flow diagram of the set-up used in this
tudy.

The cell was a divided filter-press type (Electrocell AB, Sweden)
ith Flemion® 892 as the separator, a standard DSA Cl2 and a Ni
late as the anode and the cathode, respectively (see Fig. 2). The
lectrode membrane gap was 2 mm. The feed tanks were heated
y jacketed heaters and their temperature was monitored by dig-
tal thermometers. Galvanostatic operation was employed using

DC power supply. Anolyte pH was measured by a pH-meter
nserted in the anolyte feed tank. The membrane was immersed
n NaOH solution for a day to reach equilibrium prior to each
xperiment.

.3. Experimental procedure

The anolyte and catholyte were circulated in separate hydraulic
ircuits during the experiment by two magnetic pumps according
o Fig. 1. The overflows from the anolyte and catholye compart-

ents of the cell were fed to different separators. The bubble free
lectrolytes were returned to the appropriate feed tanks for further
ecirculation. During electrolysis, Cl2 gas produced was absorbed
y 2 M NaOH solution in D-03 and then D-04. Constant currents
ere applied to the cell and the cell voltages were measured. After

ach test, the set-up was washed thoroughly with distilled water,
rained and dried. The electrolysis run times were either of 30, 60,
0, 120 and 150 min.

.4. Chemical analysis

In order to measure the caustic produced, catholyte samples
ere collected from D-02 and titrated against 0.1N HCl. These data
ere then used for calculation of the caustic current efficiency.

.5. SVM modelling

As mentioned before, the SVM algorithm was applied to corre-
ate the cell voltage and CCE to the independent variables of pH,
urrent density, temperature, flow rate, brine concentration and
un time.

Various SVM architectures were investigated to obtain desired
odel for predicting cell performance as a function of selected

nput variables. Different scenarios on the type of kernel (poly-
omial, linear, radial basis function (RBF), or sigmoid), and kernel
arameters (degree, gamma, coefficient) were analyzed to obtain
he best fit to the given data. Therefore, the developed model using
he SVM algorithm was designed to reach the optimal regression
etween input variables.
Usually, in the training phase, a larger part of data (75%) was
sed to train the model. To validate the model, 25% data pairs were
sed for the testing purpose.

The performances of the SVM models were compared using the
oot mean square error (RMSE), correlation coefficient, R2, and T

a
o
p
d
d
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tatistics Eq. (8). T value measures the scattering around the line
1:1). Where T is close to 1.0, a good fitting is prevailed.

MSE =

√√√√1
n

n∑
i=1

(Xim − Xip)2, T = 1 −
∑n

i=1(Xim − Xip)2

∑n
i=1(Xim − X̄)

2
(8)

here n is the number of data points, X̄ the average of X over the n
amples, and Xim and Xip are the measured and predicted values of
rocess and product parameters, respectively. The final model was
elected on the basis of the lowest error on train and test sets of
ata. Meanwhile, the accuracy of the SVM models was evaluated
y calculating standard deviation (S.D.) and average deviation (AD)
or each of the outputs for testing. A lower S.D. and AD indicate a
etter prediction. S.D. and AD were calculated as

.D. =
√∑n

i=1[((|Xim − Xip|)/Xim) × 100]2

n − 1
,

AD = 1
n

n∑
i=1

|Xim − Xip|
Xim

× 100 (9)

Different algorithms were made and the optimum values of ker-
el parameters obtained by trial and error. Adjustment of SVM
arameters included the kernel type, SVM type, kernel parameters,
, � and number of support vectors. � and � are SVM parameter for
erforming the cross validation grid search and parameter for RBF
ernel, respectively.

. Results and discussions

.1. Data collection

The important parameters affecting the CA cell performance
ased on our experiences and previous works [4,19–24] along with
he levels of these parameters are as follows: (1) anolyte pH: 2,
, 4 and 5, (2) cell temperature (◦C): 25, 50, 70 and 90, (3) flow
elocity (cm/s): 1.3, 2.2, 3.7 and 5.9, (4) brine concentration (g/L):
00, 235, 270 and 300, (5) current density (kA/m2): 1, 2, 3 and 4
nd (6) run time: from 30 to 150 min. The latter are summarized in
able 1.

By conducting experiments under these conditions using the
reviously mentioned procedure, cell voltage and CCE data were
btained.

.2. Calibration and developing cell voltage and CCE model

The cell voltage and CCE data were divided into two data sets,
onsisting of training and validation test data. In the training phase,
larger part of data (75%) was used to train the models and the

emaining data (25%) were used in the validation phase. The main
im of this activity was to obtain an SVM model with a minimal
imension and minimum errors in training and testing calculations.
ifferent scenarios on the type of kernel and kernel parameters
ere analyzed to obtain the best fit to the given data. For this

tructure, the best combination of the SVM and kernel parame-
ers that were used to predict the cell voltage and CCE is shown in
able 2.

Scatter data of Figs. 3 and 4 (a and b) provide comparisons of the
easured cell voltage and CCE levels with those of SVM-derived test
nd train calculations. Tables 3 and 4 also give the overall outputs
f experiments and the results obtained based on the SVM model
redictions for cell voltage and CCE. According to these results, both
ata sets provide a low average deviation (AD) among experimental
ata and SVM model predictions. However, the results of developed
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Fig. 1. Process flow diagram of the chlor-alkali set-up utilized: (1) Membrane flow cell (M.F. cell). (2) Electrolyte tank (D-01, D-02). (3) Magnetic pumps (p-01, P-02). (4) Gas
separator (S-01, S-02). (5) Rotameter (RM-01, RM-02). (6) DC power supply. (7) Two feed tank consist of NaOH for neutralization produced chlorine (D-03, D-04).

Table 1
Levels of process parameters

pH Cell temperature (◦C) Flow velocity (cm/s) Brine concentration (g/L) Current density (kA/m2) Run time (min)

Level 1 2 25 1.3 200 1 30
L
L
L

F
(

evel 2 3 50 2.2 2
evel 3 4 70 3.7 2
evel 4 5 90 5.9 3

ig. 2. Side view of the membrane cell used in this study. (1) Cell body (Teflon). (2) EPDM
6) Flow frame (Teflon). (7) Electrolyte inlet. (8) Electrolyte outlet, respectively.
35 2 60
70 3 120
00 4 150

gasket. (3) Standard DSA/Cl2 anode. (4) Flemion 892 membrane. (5) Nickel cathode.
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Table 2
The structure and performance of the final selected SVM model with optimum values
of model parameters used to predict (a) cell voltage and (b) CCE

Optimum Mean value

Kernel
type

� � Number of
support
vectors

Training Testing T

RMSE R2 RMSE R2

(
(

S
t
i
f

F
v

a) RBF 0.54 0.46 38 0.118 0.995 0.161 0.988 0.992
b) RBF 0.5 0.58 48 0.009 0.966 0.016 0.873 0.939

VM model for cell voltage have a lower dispersion compared with

hat of CCE which is likely to be due to the titration errors. This
mplies that the developed SVM model in this study can accurately
orecast the cell voltage and CCE values.

ig. 3. The measured versus SVM-simulated for cell voltage. (a) Train and (b) test
alues within 95% accuracy.

F
w

4

S

E
e
i
i
a
p
f
c
t

ig. 4. The measured versus SVM-simulated for CCE. (a) Train and (b) test values
ithin 95% accuracy.

.3. Sensitivity analysis

Model sensitivity to each of the inputs is given by:

ensitivity = % change in output
% change in input

× 100 (10)

This relates the change in output for a change of a given input.
q. (10) shows the relative importance of an individual param-
ter for a given input set. A variable having a high sensitivity
s most likely important to the modeled process. The sensitiv-
ty was calculated for each of the input parameters. A graphical

nd quantitative presentation of the impacts of the operating
arameters with contribution of each factor on mean response
or experimental and SVM-simulated cell voltage and current effi-
iency are compared in Figs. 5 and 6. First of all, it is obvious
hat the SVM model predictions are very close to the experimental
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Table 3
Experimental and SVM-simulated cell voltage values

Time (min) pH Temperature (◦C) Flow (cm/s) Brine concentration (g/L) Current density (kA/m2) Exp. cell voltage (V) SVM-Pred. Voltage (V) Error (%)

30 4 50 5.9 270 1 3.6 3.76 4.55
30 5 70 2.2 300 1 3.7 3.54 4.34
30 3 90 3.7 235 1 3.8 3.80 0.13
30 2 50 2.2 235 2 4.7 5.03 7.00
30 3 70 5.9 200 2 4.8 4.81 0.27
30 5 90 1.3 270 2 4.8 4.83 0.62
30 2 25 1.3 200 1 5.2 5.20 0.04
30 4 25 3.7 300 2 5.6 5.62 0.40
30 2 70 3.7 270 3 5.9 6.01 1.91
30 4 90 2.2 200 3 6.0 6.00 0.05
30 3 50 1.3 300 3 6.8 6.80 0.05
30 2 90 5.9 300 4 7.5 7.18 4.33
30 4 70 1.3 235 4 7.8 7.79 0.07
30 5 25 5.9 235 3 7.9 7.58 4.02
30 5 50 3.7 200 4 8.4 8.35 0.54
30 3 25 2.2 270 4 10.0 9.50 5.00
60 4 50 5.9 270 1 3.5 3.51 0.23
60 5 70 2.2 300 1 3.5 3.50 0.10
60 3 90 3.7 235 1 3.6 3.61 0.21
60 3 70 5.9 200 2 4.4 4.35 1.12
60 2 50 2.2 235 2 4.6 4.57 0.68
60 5 90 1.3 270 2 4.7 4.66 0.80
60 2 25 1.3 200 1 5.1 4.94 3.16
60 2 70 3.7 270 3 5.3 5.34 0.71
60 4 25 3.7 300 2 5.4 5.30 1.82
60 4 90 2.2 200 3 5.4 5.42 0.43
60 2 90 5.9 300 4 6.2 6.23 0.41
60 3 50 1.3 300 3 6.2 6.27 1.16
60 4 70 1.3 235 4 6.9 6.94 0.56
60 5 25 5.9 235 3 6.9 6.85 0.68
60 5 50 3.7 200 4 7.5 7.53 0.35
60 3 25 2.2 270 4 8.7 8.74 0.43

120 3 90 3.7 235 1 3.3 3.39 2.82
120 4 50 5.9 270 1 3.3 3.29 0.45
120 5 70 2.2 300 1 3.4 3.45 1.50
120 3 70 5.9 200 2 4.0 3.76 5.90
120 2 50 2.2 235 2 4.1 4.08 0.50
120 5 90 1.3 270 2 4.3 4.46 3.79
120 2 25 1.3 200 1 4.6 4.57 0.70
120 2 70 3.7 270 3 4.7 4.67 0.59
120 4 90 2.2 200 3 4.8 4.69 2.19
120 4 25 3.7 300 2 4.9 4.85 0.93
120 2 90 5.9 300 4 5.0 5.08 1.58
120 3 50 1.3 300 3 5.6 5.63 0.51
120 4 70 1.3 235 4 6.0 5.85 2.55
120 5 25 5.9 235 3 5.9 5.91 0.22
120 5 50 3.7 200 4 6.5 6.46 0.59
120 3 25 2.2 270 4 7.3 7.70 5.45
150 3 90 3.7 235 1 3.2 3.32 3.75
150 4 50 5.9 270 1 3.3 3.27 0.99
150 5 70 2.2 300 1 3.4 3.40 0.14
150 3 70 5.9 200 2 3.6 3.62 0.62
150 2 50 2.2 235 2 4.0 4.02 0.48
150 5 90 1.3 270 2 4.2 4.40 4.82
150 2 70 3.7 270 3 4.5 4.66 3.51
150 2 25 1.3 200 1 4.5 4.45 1.12
150 4 25 3.7 300 2 4.7 4.71 0.28
150 4 90 2.2 200 3 4.8 4.57 4.87
150 2 90 5.9 300 4 4.9 4.95 1.08
150 3 50 1.3 300 3 5.5 5.51 0.23
150 4 70 1.3 235 4 5.8 5.68 2.10
150 5 25 5.9 235 3 5.8 5.75 0.79

4
4

d
v
t
p
t
o

a

150 5 50 3.7 200
150 3 25 2.2 270

ata. Current density has the most prominent effect on the cell

oltage as seen in Fig. 5 with a effect value of 55.4% while the
emperature and run time are the second and third influencing
arameters with a effect value of about 21.7 and 17.8%, respec-
ively. Brine concentration has the lowest effect with impact values
f less than 1%. The impacts of pH and flow rate on the cell volt-

s

f
t
o

6.3 6.29 0.11
7.5 7.47 0.35

AD = 1.59%

ge are comparable and quite low within the experimental range

tudied.

Brine concentration and temperature are important parameters
or control of CCE according to Fig. 6. However, in respect to CCE,
he effects of operating parameters, more or less, are of the same
rder. Here, brine concentration has the highest impact with effect
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Table 4
Experimental and SVM-simulated CCE values

Time (min) pH Temperature (◦C) Flow (cm/s) Brine concentration (g/L) Current density (kA/m2) Exp. CCE SVM-Pred. CCE Error (%)

29 4 25 3.7 300 2 0.861 0.863 0.23
30 5 70 2.2 300 1 0.865 0.837 3.24
30 5 50 3.7 200 4 0.894 0.890 0.44
30 2 25 1.3 200 1 0.904 0.899 0.53
30 3 70 5.9 200 2 0.912 0.911 0.15
30 2 90 5.9 300 4 0.897 0.899 0.21
30 3 25 2.2 270 4 0.843 0.844 0.07
31 4 90 2.2 200 3 0.862 0.844 2.05
31 2 70 3.7 270 3 0.823 0.824 0.12
31 3 90 3.7 235 1 0.963 0.945 1.92
31 4 70 1.3 235 4 0.755 0.760 0.65
31 4 50 5.9 270 1 0.921 0.916 0.49
50 3 50 1.3 300 3 0.803 0.802 0.11
60 3 25 2.2 270 4 0.822 0.842 2.38
60 3 90 3.7 235 1 0.930 0.927 0.36
60 4 90 2.2 200 3 0.821 0.826 0.66
60 4 25 3.7 300 2 0.857 0.852 0.56
60 2 90 5.9 300 4 0.946 0.925 2.25
60 3 70 5.9 200 2 0.892 0.892 0.03
61 5 90 1.3 270 2 0.808 0.807 0.07
61 5 70 2.2 300 1 0.830 0.834 0.46
61 4 50 5.9 270 1 0.893 0.900 0.76
61 2 70 3.7 270 3 0.836 0.830 0.66
61 5 25 5.9 235 3 0.786 0.791 0.59
61 2 25 1.3 200 1 0.848 0.868 2.41
61 4 70 1.3 235 4 0.757 0.762 0.73
90 5 25 5.9 235 3 0.775 0.779 0.47
90 3 90 3.7 235 1 0.923 0.904 2.01
90 4 25 3.7 300 2 0.848 0.845 0.29
90 3 70 5.9 200 2 0.871 0.875 0.48
90 2 25 1.3 200 1 0.821 0.845 2.95
90 4 50 5.9 270 1 0.894 0.884 1.10
90 2 90 5.9 300 4 0.955 0.938 1.77
91 5 70 2.2 300 1 0.841 0.834 0.80
91 3 25 2.2 270 4 0.846 0.843 0.40
91 5 90 1.3 270 2 0.826 0.811 1.77
91 4 90 2.2 200 3 0.817 0.815 0.27
91 2 70 3.7 270 3 0.855 0.837 2.08
91 5 50 3.7 200 4 0.855 0.862 0.80
92 4 70 1.3 235 4 0.790 0.775 1.87

100 3 50 1.3 300 3 0.813 0.811 0.20
120 2 70 3.7 270 3 0.833 0.842 1.12
120 2 90 5.9 300 4 0.922 0.937 1.60
120 3 70 5.9 200 2 0.871 0.864 0.80
120 5 25 5.9 235 3 0.784 0.780 0.50
120 4 25 3.7 300 2 0.875 0.843 3.68
120 3 25 2.2 270 4 0.870 0.845 2.91
120 4 50 5.9 270 1 0.865 0.871 0.68
121 5 90 1.3 270 2 0.825 0.818 0.85
121 4 70 1.3 235 4 0.804 0.792 1.47
121 3 90 3.7 235 1 0.879 0.882 0.29
121 5 70 2.2 300 1 0.826 0.837 1.31
121 4 90 2.2 200 3 0.808 0.812 0.47
122 2 25 1.3 200 1 0.848 0.830 2.15
150 3 25 2.2 270 4 0.839 0.846 0.89
150 4 70 1.3 235 4 0.805 0.810 0.58
150 4 90 2.2 200 3 0.821 0.815 0.69
150 5 25 5.9 235 3 0.790 0.793 0.41
150 5 50 3.7 200 4 0.868 0.866 0.21
150 3 70 5.9 200 2 0.880 0.859 2.36
150 5 90 1.3 270 2 0.821 0.825 0.45
150 2 50 2.2 235 2 0.793 0.810 2.20
150 2 70 3.7 270 3 0.851 0.846 0.59
150 5 70 2.2 300 1 0.839 0.840 0.10
150 4 25 3.7 300 2 0.846 0.843 0.33
150 3 50 1.3 300 3 0.816 0.821 0.56
150 4 50 5.9 270 1 0.865 0.862 0.34
150 2 90 5.9 300 4 0.927 0.924 0.37
150 2 25 1.3 200 1 0.821 0.825 0.54

AD = 0.98%
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Fig. 7. Cell voltage and current efficiency at different levels of pH resulted from the
new SVM based model.

Fig. 8. Cell voltage and current efficiency at different levels of temperature by the
new SVM based model.
ig. 5. Sensitivity analysis results based on this work, Jalali’s experimental [4] and
VM-simulated cell voltage results.

alue of 20.36% while the lowest impact corresponds to flow with
ffect value of 10.6%.

Also for comparison purposes, the experimental and SVM results
rom this study were compared with those obtained by Jalali et
l. [4] in these figures. These graphs compare sensitivity analy-
is for five parameters without run time input from Jalali’s data.
lthough they neglected the influence of run time, but their results
re in good agreement with our experimental and thus SVM model
utputs. Finally it can be realized that current density and brine
oncentration variables have the highest impacts on the CA cell
oltage and CCE, respectively.

.4. Effect of operating parameters on the cell performance
ndicators

Based on SVM outputs, the effect of controllable operating
arameters on the mean response for the CA cell voltage and CCE
re displayed in Figs. 7–12. According to these results, cell voltage
s enhanced dramatically with current density while it is altered
lightly with the anolyte pH. On the other hand, the cell voltage
ignificantly decreases with increasing the cell temperature while
lightly with those of flow rate and brine concentration. The cell
oltage also decreases with run time.

The conditions to obtain a minimum value for cell voltage simu-
ated by SVM model are as follows: pH (2), T (90 ◦C), flow (5.9 cm/s),

2

brine (300 g/L), ip (1 kA/m ) and the run time (150 min).

Another valuable response which is directly proportional to the
otal energy consumed by an electrolysis cell is the current effi-
iency. The caustic current efficiency was thus measured according
o the procedure described in Section 3 and calculated based on the

ig. 6. Sensitivity analysis results based on this work, Jalali’s experimental [4] and
VM-simulated CCE results.

Fig. 9. Cell voltage and current efficiency at different levels of electrolyte velocity
by the new SVM based model.
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Fig. 10. Cell voltage and current efficiency at different levels of brine concentration
by the new SVM based model.

Fig. 11. Cell voltage and current efficiency at different levels of current density by
the new SVM based model.

Fig. 12. Cell voltage and current efficiency at different levels of run time by the new
SVM based model.
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ollowing equation [25]:

NaOH = m(t) − m(t = 0)
(It/nF) × MwNaOH

= m(t) − m(t = 0)
(It/nF) × 40

(11)

The impacts of various operating parameters on the CCE, based
n SVM results, are shown in Figs. 7–12.

According to Fig. 7, the current efficiency decreases with pH due
o the production of by products such as hypochlorite and chlorate
n anolyte at higher pH’s while pH does not have a sensible impact
n the CA cell voltage.

Fig. 8 shows variation of the caustic current efficiency and cell
oltage with the cell temperature. As it is seen, CCE improves with
ell temperature due to depressing of the side reactions while
he overall cell voltage decreases with temperature because of a
ecrease in the voltage components of the cell such as decomposi-
ion potential, IR drops and the overpotentials.

By increasing electrolyte velocity, a slight decrease in the cell
oltage can be observed as shown in Fig. 9. This may be caused
y a reduction in the amount of attached H2 and Cl2 bubbles on
oth sides of the membrane and the bubbles remained within
he catholyte and anolyte [21,24]. The presence of the bubbles
ecreases the actual conductivity of the electrolyte and thus it

ncreases cell voltage.
The cell voltage is also decreases slightly with brine concentra-

ion within the brine concentration range studied, but the effect of
rine concentration on current efficiency is pronounced, as seen in
ig. 10. This is likely to be due to suppressing of the oxygen evolution
s a major side reaction at low brine concentration.

According to Fig. 11 the current density was discovered to be
he most remarkable parameter influencing the cell voltage and
urrent efficiency. These facts were expected considering the ohms
aw for the cell voltage (
VCell = I × RCell); and Eq. (11) describing
he inverse relationship between current density and CCE.

Both functions have a downtrend with increasing run time
ccording to Fig. 12. The lower CCE achieved at higher run times.
n other words, the higher caustic concentration may be due to
he OH− back migration toward anolyte at higher runtimes. The
atholyte conductivity enhances with NaOH concentration within
he caustic concentration range studied resulting in a decrease in
he cell voltage.

For comparison purposes, the results from Jalali et al. [4] for an
xperimental system similar to the one used in this study but at
ifferent conditions, are also represented in Fig. 13. As it is obvious,
he general prediction trends developed in this study by the SVM

odel are quite consistent with the experimental results and trends
btained by Taguchi and ANOVA techniques used [4]. Nevertheless,
slight difference in values is observable due to the differences

n the set-up conditions as well as neglecting the run time as a
arameter in that study.
On the other hand for comparison between two different non-
arameter regression methods, the ANN modelling results from
hojai Kaveh et al. [26] for this experimental system, along with
he results of SVM model are shown in Table 5. According to this
able, ANN model for cell voltage has better consistency with exper-

able 5
omparison between the predictions of ANN & SVM models for the same experi-
ental data

Cell voltage CCE

AD% R2 (train) R2 (test) AD% R2 (train) R2 (test)

VM model
this work)

1.59 0.995 0.966 0.98 0.988 0.873

NN model
26]

1.27 0.997 0.989 3.14 0.903 0.802
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ig. 13. Cell voltage and current efficiency at different levels of operating parameter
ensity [4].

mental data and also the results of SVM model has a lower average
rror for predicting CCE.

. Conclusions

Cell voltage and caustic current efficiency are widely employed
o improve or enhance the performance of chlor-alkali membrane
ells. Therefore, accurate prediction of CCE and cell voltage is of
tmost importance. In this study a new SVM model for the pre-
iction of cell voltage and CCE was developed. The effectiveness of
he developed SVM model was also validated by comparing the pre-
icted results with the measured cell voltage and CCE values. Based
n the results obtained in this study, the following conclusions are
rawn:

1. SVM model can be used to predict the impacts of operating
parameters including pH, temperature, flow rate, brine concen-

tration, current density and run time on the cell voltage and
current efficiency of a chlor-alkali cell.

. The SVM technology has been shown to be a useful tool not only
to approximate but also to predict cell voltage and CCE versus
process parameters in membrane chlor-alkali cell.

8

H, (B) temperature, (C) electrolyte velocity, (D) Brine concentration, and (E) current

. The final selected SVM models were able to predict the cell volt-
age and CCE values with RMSE of 0.161 and 0.016, R2 of 0.998
and 0.873, and T values of 0.992 and 0.939, respectively.

. The current density and cell temperature have the highest effect
values on the cell voltage, i.e. 55.4 and 21.7%, respectively.

. Based on SVM-simulated outputs, the following operating con-
ditions are proposed to maximize the current efficiency and
minimize the cell voltage: pH = 2; temperature = 90 ◦C; flow
rate = 5.9 cm/s; brine concentration = 300 g/L; and current den-
sity = 1 kA/m2.

. Evaluation of the relative effectiveness of operating parame-
ters by the SVM model revealed that while current density
and temperature have the largest contribution to the cell volt-
age, brine concentration have the largest impact on the current
efficiency. Other factors have almost similar effects on the
response.

7. The values of predicted cell voltages and CCE were quite compa-
rable with those of measured values with an average deviation

of only 1.59 and 0.98%, respectively.

. A comparison between SVM model of this work and ANN model
from a previous work [26] shows that the developed ANN model
predicts the cell voltage, and the developed SVM model predicts
current efficiency, more accurately.
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